
Extending MACS: Learning and Natural Language Processing for Enhanced Support of
Contracting Officers in US Government Defense Research Contracting

March 2002

Bonnie Rubenstein-Montanoa†, Victoria Yoonb, Stuart Lowryc, & Teresa Wilsonb

a The McDonough School of Business, Georgetown University
b Department of Information Systems, University of Maryland, Baltimore County

c Science Applications International Corporation

ABSTRACT. Contract procurement in US defense research contracting is a fairly personnel-
intensive process. Recent advances in artificial intelligence, intelligent agents in particular, lend
themselves to enhancing the status quo of US defense research contracting by automating, at
least partially, aspects of the contracting process. A Web based multi-agent system, called the
Multi-Agent Contracting System (MACS), has been developed as a first step in automation of
the contracting process (Liebowitz et al., 2000; Rubenstein-Montano et al., 2001; Yoon et al.,
2001). The research presented in this paper extends the capabilities of the original MACS
system. Specifically, the existent Bayesian learning algorithm has been refined, reinforcement
learning has been designed into the system to allow direct feedback from system users, and the
grammar of the natural language interface has been expanded to better accommodate user needs.

1 INTRODUCTION

In U.S. defense research contracting, scientists expend significant effort to complete

administrative details for contract acquisition, and often rely on the Defense Acquisition

Deskbook for assistance. However, the current system requires human experts to respond to

queries by scientists. Work on automating the process by developing a multiagent system to

respond to scientist queries has been completed by several researchers (e.g. Liebowitz et al.

2000, Rubenstein-Montano et al. 2001, Yoon et al. 2001). The system, termed Multi-Agent

Contracting System (MACS), can be accessed at http://kmlab-01.ifsm.umbc.edu/macs/. MACS

assists scientists with the pre-award phase of contracting. The work presented in this paper

† This work has been supported by the FY 2001 External Acquisition Research Program (EARP). The research was
partially completed while Dr. Rubenstein-Montano was at the University of Maryland, Baltimore County.

http://kmlab-01.ifsm.umbc.edu/macs/

EARP Report for 3/31/2002

extends the capabilities of the existing multiagent system by designing it to learn from system

users and to interact with users via a natural language interface.

1.1 Learning

Traditional machine learning has developed a wide variety of algorithms for providing

single-agent systems with learning capacity (Mitchell 1997). Among the main classes of

algorithms for traditional machine learning are induction of trees and rules, learning in neural

nets, system classifiers and genetic algorithms, reinforcement learning, Bayesian learning, case-

based learning, logic-based learning, and some others. However, these algorithms do not apply

directly when used in multiagent systems (MAS).

Learning in MAS has been studied by such researchers as Ayala and Yano (1998), who

use agents in the area of computer supported collaborative learning, Vaario and Ueda (1996)

look at modular learning in multi-agent environments, Norrie and Gaines (1995) who

conceptualize learning on the Web through agents, and Rubenstein-Montano et al. (2001) who

use agents in the area of defense contracting. There are also several researchers who have

looked at specific learning techniques in multiagent systems such as Bayesian learning

(Goldman & Rosenschein 1996; Sen & Sekaran 1996; Zeng & Sycara 1998) and reinforcement

learning (Goldman & Rosenschein 1997; Prasad & Lesser 1999).

 2

EARP Report for 3/31/2002

1.2 Natural Language Processing

Much of the theoretical and applied research in Natural Language Processing (NLP)

comes from the field of Computer Science and Artificial Intelligence, although NLP also

extends into linguistics, cognitive science, psychology and philosophy. In its most elemental

sense, NLP refers to any technique used to process natural language.

NLP history spans five decades, beginning with the research of noted MIT linguist Noam

Chomsky in the 1950s and 1960s to current day work in the 21st century. The traditional

applications of NLP are text and speech processing, but NLP is evident in expert systems,

intelligent agents, and smart interfaces. NLP has been applied to many application areas to

include information extraction, information retrieval, machine translation, text summarization,

speech synthesis, natural language generation and question and answering (QA).

The information explosion of the last 5 years has brought NLP back into the mainstream

of research. Search and retrieval, particularly Web applications on the Internet, seem to generate

the most interest and thus receive the lion’s share of NLP research. In the past few large-scale

Internet search engines have supported Natural Language querying, but most have returned to the

traditional indexing techniques. Examples of current techniques include automatic words

stemming, automatic identification of proper nouns and other classes of words, automatic phrase

identification and automatic concept identification [Liddy, 1998].

 Research in NLP continues, to include work on ontologies, semantic nets, and concept

mapping, in additional to the traditional areas of algorithms, data structures, database, and

statistical/stochastic methods. Example of recent studies include incorporating relevance

feedback to improve performance (Iwayama, 2000; Vakkari, 2000), performance evaluation

methodologies (Hersh et al, 2000; Buckley and Voorhees, 2000), event tracking for improved

 3

EARP Report for 3/31/2002

text categorization (Fukumoto and Suzuki, 2000; Yang et al, 2000), machine learning and

probabilistic techniques (Kim, Hahn, and Zhang, 2000; Silva et al, 2000; Manivetz and Yousef,

2000; Petasis et al, 2000); distributed searching (Power et al, 2000), linguistic features and

document clustering (Hatzivassiloglou, Gravano, and Maganti, 2000); cross-language retrieval

(Sperer and Oard, 2000); question and answering (Prager et al, 2000; Voorhees and Tice, 2000);

and Web content hierarchy and caching techniques (Lu and McKinley, 2000; Dumais and Chen,

2000).

2 THE MACS SYSTEM

The subsections below describe the MACS system prior to EARP FY 2001.

2.1 Description

The MACS system is a MAS developed for procurement and acquisition of defense

contracts. Specifically, it is designed to assist contracting officers with the pre-award phase of

contracting and procurement. The system architecture consists of nine agents — a User agent, a

Facilitator agent, a Natural Language agent, a Machine Learning agent, and five specialty agents.

The specialty agents are encoded with domain knowledge about the five general areas of

expertise required of contracting officers, and the user agent interfaces with contracting officers.

Interaction between contracting officers and the system occurs through either keyword searches

or natural language queries. As shown in Figure 1, the MACS architecture implements a typical

 4

EARP Report for 3/31/2002

three-tiered brokered architecture. The Facilitator agent coordinates agent activities and

communicates with the agent(s) capable of responding to an incoming query.

 User Agent

Natural

 Language
Agent

Machine
Learning

Agent

 Synopsis

Agent

 Evaluation

Agent

Justification
Agent

Contract

Agent

Forms
Agent

 Facilitator/Broker

 Agent

User:

 Contracting Officer

Figure 1: Agent architecture and communication channels

The user agent interacts with the user/contracting officer to welcome the user, ask what

pre-award questions the user has, and serve as the interface between the user/contracting officer

and the other agents in the system (Liebowitz et al. 2000). Two business logic threads have been

designed into the User agent. One thread supports the Natural Language capability of the

 5

EARP Report for 3/31/2002

system, and the other supports the keyword search capability of the system. The User agent

sends incoming user queries to the Facilitator agent, which is responsible for communicating

with all of the other agents in the MACS system as illustrated in Figure 1.

Queries submitted by users are forwarded, by the Facilitator agent, to the Machine

Learning (ML) agent, the ML agent implements Bayesian learning and creates an action plan,

and that plan is then issued back to the Facilitator agent for completion. In MACS, the action

plan is essentially a determination of which specialty agent(s) should be contacted to respond to

an incoming query. The facilitator completes the action plan by performing the necessary low-

level communication between the specialty agents. These communications lead to solutions

being sent from a specialty agent (or agents) to the Facilitator agent and then from there to the

User agent. As solutions to a query are collected, the ML agent updates its internal tables,

making note of which agents responded to which user queries. This information is used to

calculate the response plan for similar queries in the future.

The five specialty agents in the system relate to the pre-award phase of a contract and

include the Forms, Justification, Evaluation, Synopsis, and Type of Contract agents. The Forms

agent identifies the forms needed to complete a procurement request package. The Justification

agent indicates situations where a justification and approval is required to complete a

procurement request. The Evaluation agent provides guidelines for evaluating proposals. The

Synopsis agent identifies the type of synopsis for a given procurement request. Lastly, the Type

of Contracts agent identifies the type and nature of a contract based on conditions such as the

source of contract, the nature of the work, etc.

Each agent in MACS contains a rule base and has explicit goals. Its rule-base describes

how to achieve the goals under varying circumstances. The specialty agents respond to incoming

 6

EARP Report for 3/31/2002

queries by presenting necessary information and/or requirements for contracting officers. For

example, the Evaluation Agent can assist a contracting officer with information regarding how to

evaluate a project and what criteria or weights to use for evaluation of a contract. If a

contracting officer has a question regarding "determining weights on evaluation criteria," the

Evaluation agent will reply with "You can develop your own weights on technical,

qualifications, and cost criteria. Generally speaking, a weight of 40 percent (out of 100%) is

given to cost." (Liebowitz et al. 2000).

The knowledge contained within each specialty agent is independent of the knowledge

contained within the other specialty agents. Thus, coordination between the specialty agents is

not required for the current implementation. However, each specialty agent does coordinate with

the user agent in order to answer queries. In the original system (Liebowitz et al. 2000), the user

agent broadcast messages to all specialty agents. The learning capability that is now part of

MACS allows the user agent to learn which specialty agent(s) should receive incoming

messages. The user agent asks the ML agent to determine which specialty agent(s) should

receive the query. The ML agent makes this determination probabilistically, by means of

Bayesian learning.

2.2 Learning in MACS

The existing MACS system, which resulted from EARP 2000, uses Bayesian learning

applied in the ML agent. Here, learning involves learning which specialty agents should receive

incoming messages. The approach is similar to that of Heckerman and Horvitz (1998) where

user goals are inferred from user queries using a naive Bayesian classifier. However, the

 7

EARP Report for 3/31/2002

Heckerman and Horvitz (1998) approach allows for free-text queries whereas MACS is designed

for both free-text, Natural language queries and keyword searches.

Essentially, the user agent employs a Bayesian model to identify which specialty agent(s),

ai, are most likely to respond correctly to a query given the evidence, e, appearing in the query,

q. The Bayesian learning procedure is as follows:

1. User enters a query, qincoming
2. Use Bayesian reasoning to determine which ai should receive the query.

 For each ai (i = evaluation, synopsis, justification, forms, type of contracts):
◆ CALCULATE the percentage of time each keyword appears in all qexisting
 (e.g., evaluation criteria appears in 80% of existing queries sent to the
 aevaluation)
◆ CALCULATE probability(evidence/ai) by multiplying all percentages
 calculated in the immediately preceding step that correspond to qincoming.
 Probability(evidence/ai) represents the likelihood that a query actually
 corresponds to the domain knowledge of that ai. This is a causal relationship
 from the cause (ai) to the effect (qincoming).
◆ USE the Bayesian formula by (a) multiplying the prior probability, P(ai), by
 probability(evidence/ai), (b) sum all calculations from (a), and (c) divide
 each individual result from (a) by (b). This will give the
 probability(ai/evidence). P(ai) represents the likelihood qincoming should be
 sent to a particular ai given no evidence. At time 0, P(ai) = 0.2 for all i.
 Probability(ai/evidence) is the posterior probability distribution of ai given
 the evidence. This probability assesses the likelihood that a specialty agent
 will answer qincoming based on the evidence provided by qincoming itself.
◆ DIVIDE probability(ai/evidence) by P(ai)

After completing the calculations for each ai
◆ IDENTIFY the result with the greatest value
◆ SEND qincoming to the corresponding ai
◆ ADD qincoming to the list of qexisting for the corresponding ai

2.3 Natural Language Processing in MACS

The NLP agent in MACS is the Definite Clause Grammar-Natural Language (DCG-NL)

in OAA, which is designed to parse incoming natural language queries. Through the use of a

 8

EARP Report for 3/31/2002

logic-based grammar called Definite Clause Grammar (Pereira & Warren, 1980), the DCG-NL

translates incoming English queries into expressions using an agent communication language

used in OAA, called Interagent Communication Language (ICL).1

ICL expressions are internal OAA representations of the natural language query that the

agents can act upon. Each parsed word or phrase must be registered in the vocabulary of the

appropriate agent. The name of each agent corresponds to the functor, or a term that represents a

particular function. For MACS, the functors are “Forms”, “Justification”, “Types of Contract”,

“Synopsis”, and “Evaluation”. In cases where there may be multiple expressions synonymous

to the functor, an alias was created so that expressions could be resolved to one functor. For

example, for the Evaluation agent, “evaluation” is the function, so the functor is the word

"evaluation". Phrases such as "evaluation weights" and "evaluation criteria" were aliased to

"evaluation" so that any ICL expression with the functor “evaluation” will be sent to the

Evaluation agent. There also are nouns, adjectives, and verbs that are used by all agents. These

words, along with their lexical categories, are combined in one list called "Common". Each

word is XML-tagged with its appropriate part of speech. This allows the DCG-NL, powered by

the linguistic content of its grammar, to recognize the lexical information so that it can

effectively parse the query. Examples of parsed outputs are listed in Table 1.

1 ICL is a logic-based declarative language that expresses high-level, complex tasks and natural language
expressions. SRI chose a logic-based language because it was important that the language the agents spoke could
represent and easily translate back and forth to human language (The Open Agent ArchitectureTM , 2000).

 9

EARP Report for 3/31/2002

Table 1: Examples of Parsed Outputs

forms('capital equipment',['major procurement'],)

wh(var(forms([]),go([in(some('PR package'([for(some(procurement(['capital equipment’,
 major])))]))),subject(var()]))

contract(arrangement('labor hour'),[])

evaluation(proposal([unsolicited,for(award('sole source'))]),[])

synopsis('I',procurement(['ADP',under(count(50000,dollars))]),[on(schedule('GSA'))])

 When a query is parsed, the Facilitator agent sends the parsed output to a specialty agent

capable of handling the query. That agent will "fire a rule" from the knowledge base and return a

relevant piece(s) of information to the user; that is, when the condition stipulated in the rule is

met, the user is provided with the answer to his/her natural language query. An answer is

returned if any one or more rules fire within the specialty agent.

3 COMPLETED WORK for EARP 2001

3.1 Learning in MACS

For EARP 2001, two key extensions to the learning capabilities have been designed into

the MACS system. The first enhancement is directly in-line with the FY 2000 EARP work. In

the 2000 system, Bayesian learning was built into the system via the machine learning (ML)

agent. Here, the system learned which specialty agent should receive an incoming query.

However, the original implementation allowed only one specialty agent to receive each incoming

query. There are cases where several specialty agents may have partial answers to a query.

 10

EARP Report for 3/31/2002

Thus, the system has now been upgraded to allow the ML agent to learn which agent(s) to whom

incoming queries should be sent. It is possible that only one agent will receive a query, but it is

also possible that more than one will receive a query if the ML agent deems it possible that more

than one agent has knowledge relevant to the query. The enhancement works as follows:

1. Use the Bayesian probabilities as they are currently calculated to sort the specialty agents
in descending order of probabilities.

2. Send the query to any and all agents that have a Bayesian probability equal to that of the
first ranked specialty agent.

3. If the probabilities are not all equal, check to see if the second ranked agent has a
probability within 1/100th of 1% of that of the first ranked agent. If so, send the query to
both the first and second ranked agents.

4. Otherwise, if the probabilities are not all equal, and the second ranked agent does not
have a probability within 1/100th of 1% of that of the first ranked agent, send the query to
only the first ranked agent.2

The second extension to learning in the MACS system involves feedback, or

reinforcement, learning in the User agent. Reinforcement learning (Jerbic et al. 1999; Kokar &

Reveliotis 1993; Maclin & Shavlik 1996; Prasad & Lesser 1999; Shen 1994) involves agents

acquiring new knowledge (i.e., learn) by acquiring feedback from previous experiences and the

environment. A reinforcement signal results from an agent's actions. However, specific actions

are not provided; and the agent learns to improve performance based on the signal(s) (Jouffe

1998).

In the MACS system, reinforcement learning occurs in the Natural Language (NL) agent,

and the natural language interface and learning capabilities are integrated to some extent.

Essentially, MACS learns what a user is trying to ask based on similar past questions. When a

2 1/100th of 1% was selected for initialization purposes. Once the system is further tested, this value may change,
depending on probability values (i.e., if probabilities rarely get that close, or are always that close, the value will be
adjusted accordingly).

 11

EARP Report for 3/31/2002

user inputs a new natural language query, it either does or does not parse. If it parses, MACS

functions as it did at the end of FY2000.

The Gemini parser added to the system in FY2001 is equipped to handle a finite number

of grammatical constructs, but users are able to ask questions many different ways. Therefore,

we have built a web application that allows users to ask a question several different ways for

when questions cannot be parsed and until a satisfactory answer is located.

If the query does not parse, reinforcement learning is invoked because the query cannot

be resolved until it is parsed by the NL agent. There are two steps taken by MACS if a query

does not parse. First, a cache is searched to see if the same query was asked previously. If so,

the results presented previously are presented again. In this case, the cache operates as a hash

table. As sentences that cannot be parsed are submitted, they will be associated with sentences

that have been parsed. If the user submission is matched to a previously unparsed sentence in the

cache, the submission that cannot be parsed will be exchanged with the one that can be parsed.

The sentence that can be parsed will then be submitted in-lieu of the original sentence. This

technique reduces the burden on the NL agent for learning new vocabulary and grammar by

allowing past users to create “synonymous sentences”.

If the same unparsable query is not present in the cache, a second step is taken. Here, the

user is asked, by the User agent, to "categorize" the question, and try to re-phrase it. Users can

categorize the query according to the five specialty agents. Once rephrased, the original query

(hidden field on form) and the new one are sent to the User agent. From here, two things may

happen:

 12

EARP Report for 3/31/2002

1. If the rephrased question parses, the rephrased question then serves as the feedback for the

original question. If, in the future, another user asks the same original, unparsable query,

MACS will have learned from the user who first asked the question what is really being

asked. Instead of requiring this new user to rephrase the query, MACS remembers the

version of the question that can be parsed by the NL agent, and submits that query on the

behalf of the user.

2. If the re-phrased query still does not parse, all previously asked and answered queries in the

same "category" are presented to the user in the form of a pick list. The user can then select

one of the resolved queries. If a previously resolved query is selected, the series of

unanswered, rephrased queries are linked to the resolved query. This serves as feedback so

that if the same, unparsable query is submitted in the future, MACS will resolve it without

requiring the user to complete any of the aforementioned steps. This serves as a sort of

"synonomous sentence cache (SSC)."

The feedback cycle continues until the query is resolved. Once an answer is identified,

all sentences supplied during a given session will be presented to the user with the retrieved

answers. The user will be able to select the earlier session sentences as being synonymous.

These synonymous sentences will be used as the basis of reinforcement learning whereby MACS

will learn how to provide responses to queries that cannot be handled by the Gemini parser.

When a subsequent user session occurs, the synonymous sentences will be tied to the parsable

question from some prior session. This technique increases the breadth of sentences supported by

 13

EARP Report for 3/31/2002

the MACS system, without having to modifying the grammar or the vocabulary for the Gemini

NL parser.

3.2 Reinforcement Learning Example

In this section we adopt the approach taken by Maulsby & Witten (1997) to review

learning in the MACS system. An example is reviewed instead of presenting a statistical

analysis of results. A series of screen shots below illustrate the process. The user is presented

with a web page that will manage a “session”. The user controls a session in order to drill

through the knowledgebase to discover an answer to their question.

Screen 1: User “StuartLowry” arrives at the NLP Submission form

Input Screen for Multi-Agent Contracting System (OAA version) 1

2

3

4

5

’

14

EARP Report for 3/31/2002

1. Change Token – This hyperlink allows users to set a cookie so that their interactions can

persist. All submissions into the system are tied to this cookie. It is not a security feature
but rather a means to identify unique users. Any identifier can be used.

2. Ask a question – The user freely types any question he wishes to submit to the system.

3. Your Questions – All questions submitted by the users are available. The idea is that

users frequently ask the same questions. As the rule base behind MACS evolves (new
contract restrictions are created, new laws are enacted, etc), a user may wish to come
back to MACS and see if the answer to a question that was asked before, has changed.
They can quickly select one of the many questions they have already entered from a past
session.

4. This Session’s Sentence(s) – This area is used to display the unanswered questions of the

current session. It acts as a sort of “shopping cart” of sentences, where the system
remembers all sentences input during the current session. Then the user can match
[select] unanswered questions with the one that asks the same basic question but that
returned a meaningful response.

5. Management – The hyperlinks in this section will allow users to remove questions from

the persistent cache that appear in item #3.

 15

EARP Report for 3/31/2002

Screen 2: User “StuartLowry” supplies an un-answerable question3

Input Screen for Multi-Agent Contracting System (OAA version)

2

3

1

 ’

1. Category – When MACS is unable to answer a question, the user can categorize the

problem. The categories are directly related to the specialty agents that are running in the
system. In this case, the user has selected the justification category.

2. Pick list of questions (justification) – This pick list contains all of the questions that have

been answered to date by the justification agent. The user can scan this list to see if their
question has already been asked and answered. If they select a question here it will be as
if they typed it into the form themselves. When this question is answered again the user
can make the original question a synonymous question and thus increase the scope of the
system. This is the reinforcement learning that occurs in the system as a result of user
input.

3. The session space is updated to reflect this session’s submissions.

 16

3 Actually, this question can be answered, but the Gemini parser was turned off for illustration purposes.

EARP Report for 3/31/2002

Screen 3: User “StuartLowry” submits a sentence that is answerable: What do I include in a
sole source justification?

2

 17

EARP Report for 3/31/2002

Screen 3 (con’t)

1

1. #1 is checked because it is the sentence that was successfully answered. The user can

now check all other sentences that are “synonymous”. This feedback serves as the input,
or reinforcement, needed for learning in the user interface part of the system so that
MACS can learn how to provide responses for sentences that cannot be handled by the
Gemini parser.

2. #2 & #3 are the previous attempts to solve the user problem.

3. If the save button is selected, each of the checked items will be saved (#1 & #2). The

additionally checked sentences (#2) will be synonymous to the sentence that was
successfully answered (#1). Therefore, when a future user submits the #2 sentence, this
same answer will be returned rather than the unsuccessful screen.

 18

EARP Report for 3/31/2002

Screen 4: A new user session occurs and the previously unanswerable question that is now a
synonymous sentence is submitted.

1

Screen 4 (con’t)

 19

EARP Report for 3/31/2002

1. The user is notified that while an answer was found, this sentence was replaced with its
supported counterpart. It should be noted that the counterpart is resubmitted to the
system. The supported sentence is resubmitted in case the rulebase has been modified.
This is important because MACS does not manage a cache that ties answers to questions.
Instead, questions are evaluated each time they are input to save memory.4 Once a
question is input that does not parse but that has been deemed equivalent to a sentence
that does parse (by a user), the sentence that does parse will be resubmitted on the user’s
behalf. This maintains system flexibility in that answers can evolve over time without
interrupting the system since answers are not hard coded into question-answer
combinations.

Screen 5: Administration

In order to oversee the user-supplied information, a MACS administrator can selectively

eliminate any question that has been marked as synonymous. Because users can broaden the

scope of the MACS system, there is always the potential for users to enter inaccurate

information. Thus, the MACS system administrator retains ultimate control over which

sentences are deemed equivalent so that clearly inappropriate user selections such as those in the

screen below can be removed.

4 This concept is similar to that of the Internet, where the location of information is of utmost importance. Rather
than trying to physically store all information on a single PC, server, etc., locations are retained for access when
necessary which is more efficient from a storage perspective.

 20

EARP Report for 3/31/2002

2

1

1. Each of the specialty agents has a synonymous sentence cache. Access to this page is

restricted to MACS Administrators.

2. The checked items will be permanently removed from the system.

3.3 Natural Language Processing in MACS

In order to improve the performance of the natural language interface of the User agent,

the DCG-NL agent has been replaced by another parser called ATTAIN. ATTAIN is a package

of natural language OAA agents which provides parsing and translation of English sentences into

ICL messages that other agents can use. The difference between ATTAIN and the DCG-NL is

that ATTAIN uses a unification grammar while the DCG-NL used a Definite Clause Grammar.

 21

EARP Report for 3/31/2002

Unification grammar means that grammatical categories incorporate features that can be

assigned values; so that when grammatical category expressions are matched in the course of

parsing or semantic interpretation, the information contained in the features is combined, and if

the feature values are incompatible the match fails. This parser technology provides a more

expressive ICL representation and other advantages as well. (The Open Agent Architecture,

OAA, 2000.)

The ATTAIN suite comes with four OAA agents, two of which are used in MACS. The

attain_nl_agent takes the incoming query and transforms it into a logical form (LF), which

represents the meaning of the sentence. Then, the nl_icl_agent takes the LF and transforms it

into an ICL representation. For example, for the query “What contract do I need for labor and

material only?” the LF is:

 (wh((), quant(wh,contract),vpred(need,subject(),object(()),

 ppred(for,quant(some,[labor,and,material,only],[]))]))))

while the ICL is:

 (wh(),contract,need(me),[for([labor,and,material,only])]))

In other words, the LF represents the grammatical construction of the query with linguistic

markers such as wh, quant, vpred, subject, object, ppred. The ICL representation translates and

simplifies the LF.

For EARP 2000, significant modifications were made to the original user queries because

the DCG grammar was limited and could not successfully parse the queries. This shortcoming

was the impetus for replacing the DCG-NL parser with ATTAIN. ATTAIN incorporates most of

the sentence types that the DCG-NL can parse, but it has more sentence types that can be parsed.

ATTAIN has a few features that DCG-NL does not, including:

 22

EARP Report for 3/31/2002

– inflected forms of regular nouns and verbs (singular/plural, present/past tense) do not

need to be individually entered as vocabulary items. ATTAIN analyzes

 morphology;

 – the “double object” construction is allowed, whereby both direct and indirect

 objects that are noun phrases can be parsed, resulting in successful parses

 of longer, more complex sentences;

 – the arguments of a verb are listed in order, so subsequent processes requiring

 linguistic analysis could be performed more easily.

 Table 2 presents a sample set of the sentence types that ATTAIN can parse but the DCG-

NL could not.

Table 2: Types of Sentences Parsed only by ATTAIN

 Types of Sentences

Which contract type do I submit if my
proposal deals with university research?
How do I determine the scoring of
evaluation criteria for competitive
solicitations?
What is the procedure for synopsizing
when submitting an unsolicited proposal?
Do I need an acquisition plan if I am
providing a sole source justification?

In general terms, ATTAIN allows for both active and passive voice constructions,

extensive use of modals (should, could, would), and longer verb predicates (longer lists of noun

 23

EARP Report for 3/31/2002

phrases and prepositional phrases after the verb). These seemingly simple features greatly

enhanced the type of queries that are encountered in the contracting domain.

 ATTAIN still has its limitations, however, since it is still biased toward the particular

domain for which it was built. It does not handle conditional phrases to the extended MACS

needs to, such as “If I am dealing with a major procurement contract that involved non-library

materials and non-equipment purchases, what forms should I use?” It has problems handling

numbers in that numbers must function as modifiers, such as 5 hours, and certain special

characters cannot be used, such as ‘&’ or ‘$”. This was overcome by modifying the queries into

parseable phrases, rendering multi-term tokens that include numbers into single-term tokens by

using underscores “_” between the terms, such as DD_Form_1498, and expanding ‘&’ and ‘$’

to ‘and’ and ‘dollars’, respectively.

3.4 Information Retrieval

The information retrieval portion of MACS has been upgraded also. Information retrieval

(IR) within MACS occurs after the parsing of the natural language user submission. IR binds the

ICL resulting from the natural language agent, to the actual rules in the specialty agents. The IR

process is comprised of steps that include reducing the ICL into a series of words, elimination of

stop words, and Boolean matching the terms in the conditional portion of the specialty agent

rules. First, the ICL resulting from the NL agent is stripped down.

1. All of the special characters are stripped out of the ICL (parentheses, commas,

double & single quotations, brakets).

 24

EARP Report for 3/31/2002

2. All of the prolog style lists are expanded to a series of terms. (e.g. [‘up the

hill’,’Ed’,’Cameron’] gets turned into “up the hill Ed Cameron”.

The second step is to remove the stop words. The stop words are managed by the MACS

System Administrators. A web form was developed to allow system administrators to add, and

remove words from the stop word list. The stop words are those deemed by the Administrators of

the MACS system as beiong statistically insignificant. Therefore, whenever these words are

present in the resulting ICL, they are removed from further consideration. The final step

performs the Boolean matching function to the individuals rules in the specialty agent. This

piece of the IR occurs in the specialty agent itself. This logic occurs here because it is considerd

to be the “value added” by the specialty agent. Each agent is capable of applying a unique

criteria to match the word list to its individual rules. At this time the distinction between the

specialty agents is the rulebase knowledge and not their individual functionalities.

Therefore, each specialty agent applies the same matching algorithm. The matching

algorithm consists of a boolean matching percentage, and a whole word match requirement.

Instead of an implicit Boolean “AND”, a percentage scale was used. 1% was equivalent to the

implicit “OR” and 100% was equivalent to the implicit “AND”. Although performance using

the implicit “AND” was good, it was too inflexible because the IR was performed on only

perfectly exact matches. But, an implicit “OR” was too unconstrained, resulting in too many

irrelevant rules to be fired. There really was no good way to control the search in 2000. This

was the motivation behind the percentage scale. The whole word matching requirement assisted

in narrowing the result set to the proper rule. As each word in the word list was matched in the

clause portion of a particular rule, it was flagged as matched. Each term in the word list was

treated with the same weight. At the end of the matching processess, the number of hits was

 25

EARP Report for 3/31/2002

divided by the number of terms present in the word list and multiplied by 100. If this value is

greater than or equal to the pre-set Boolean percentage, then the rule will be considered an

answer to the question. An end-to-end example of the IR approach is detailed in table 3.

Table 3: Information Retrieval Example

1. User Submission “Which type of contract do I need for a labor

hour arrangement?'

2. NL output (ICL) Solve(wh(var(_9064),[type,of,contract],need(me,var(_9064),

[for([labor,hour,arrangement])])),[])

3. Strpped ICL wh var type of contract need me var for labor hour

arrangement

4. Word list supplied to

specialty agents (stop

words removed)

'contract','labor','hour','arrangement'

5. Sample rule in the

“contract” agent

<rule name="5">
<condition>
<or>

<clause>labor hour</clause>
<clause>time and material</clause>
<clause>materials</clause>
<clause>indefinite delivery</clause>

</or>
<or>

<clause>arrangement</clause>
</or>
</condition>
<answer>
The type of contract is cost-plus-fixed-fee

</answer>
</rule>

 26

EARP Report for 3/31/2002

Table 3 (con’t.)

6. Matching Output <condition>

<or>
<clause>labor hour</clause>
<clause>time and material</clause>
<clause>materials</clause>
<clause>indefinite delivery</clause>

</or>
<or>

<clause>arrangement</clause>
</or>
</condition>

7. Statistical comparison 3 hits / 4 words * 100 = 75%

the present Boolean Pecentage was set to 50% so thefore,

this rule is valid.

3.5 Results

 Thirteen (13) out of 23 queries from EARP 2000 and 13 new sentences were used to test

the performance of NLP and IR. Only those queries that had applicable rules in the rule base

were used. All 26 sentences (100%) were successfully parsed. Moreover, fewer queries needed

to be modified because ATTAIN is more robust than the DCG-NL. The following are examples

of the queries, their ICL expressions, and final parses for IR:

What do I evaluate for a sole source unsolicited proposal?
oaa_Solve(wh(var(),thing([]),evaluate(me,var(),[for([sole,source,
unsolicited,proposal])])),[])
(['evaluate'],['sole','source','unsolicited','proposal'])

 What evaluation do I need for a sole source unsolicited proposal?
 oaa_Solve(wh(var(),evaluation,need(me,var(), [for([sole,source,
 unsolicited,proposal])])),[])
 (['evaluation','sole','source','unsolicited','proposal'])

 27

EARP Report for 3/31/2002

 When do I synopsize an ADP procurement under 50000 dollars on the GSA
 schedule?
 oaa_Solve(wh(var(),time([]),synopsize(me,procurement([adp]),[under(cou
 nt(50000,dollar([on([gsa,schedule])]))),to(var())])),[])
 (['synopsize','procurement','under','dollar'],['adp','50000','gsa','schedule'])

 What type of synopsis do I need for an ADP procurement under 50000 dollars
 on the GSA schedule?
 oaa_Solve(wh(var(),type([of(synopsis)]),need(me,var(),[for(procurement
 ([adp,under(count(50000,dollar([on([gsa,schedule])])))]))])),[])
 (['procurement','under','dollar'],['synopsis','adp','50000','gsa','schedule'])

Do I synopsize an ADP procurement under 50000 dollars on the GSA schedule?
 oaa_Solve(synopsize(me,procurement([adp]),[under(count(50000,dollar([on
 ([gsa, schedule])])))]
 (['synopsize','procurement','under','dollar'],['adp','50000','gsa','schedule'])

 How is scoring of evaluation criteria determined for competitive solicitations?

oaa_Solve(be(how,scoring([of(evaluation([rel(var(),determined(criteria,
var(),[for([competitive,solicitations])]))]))]),[]),[])

 (['scoring','determined'],['criteria','competitive','solicitations'])

 What is the scoring of evaluation criteria for competitive solicitations?
 oaa_Solve(wh(var(),thing([]),be([scoring,of,evaluation,criteria,for,
 competitive,solicitations],var(),[])),[])
 (['scoring','evaluation','criteria','competitive','solicitations'])

The performance of NLP was tested on the basis of the percentages of parsed words

presented in the condition part of a rule. It was determined to use the 50% as the threshold,

whereby half of the parsed words needed to be present in the rule base to fire a rule. Ground truth

rules, which are those that the domain expert had determined to be the “correct” rules, were

identified and used to evaluate performance. Table 4 presents the summary of NLP/IR

performance results.

 28

EARP Report for 3/31/2002

Table 4: Summary of Results

Types of Result

Hit Ratio

Queries returning a rule 26 out of 26, 100%
Queries returning only the ground truth rules 8 out of 26, 31%
Queries returning more rules in addition to
ground truth

18 out of 26, 69%

Although there was a significant increase in recall or coverage compared to MACS 2000

results, precision did not seem to have been affected since all of the ground truth rules were

fired. There are three possible reasons for these performance results. One is due to the 50%

search percentage. Since the search was not restricted to exact term matches, there were more

rules in the rule base that would have the search terms in them. In other words, the search space

just increased. The second is due to the fact that more than one agent responded with rules (for

12 of the queries). Strictly speaking, these additional rules could be considered “irrelevant” hits,

but these additional rules provide useful information to the user, even if they were not answered

by the “most correct” agent and were not the “most relevant” information. For example, the

Contracts agent successfully answered a contracts-related query, but additional information

provided by the Synopsis agent could be something the user would need to know later if the user

subsequently needed to submit a synopsis. This could be a time saver in that the user would not

have to query MACS a second time for a Synopsis-related question.

The third is due to the terms themselves. There was a significant number of additional

rules returned for 2 queries: “Do I need an acquisition plan for a sole source justification

procurement request?” (12 total rules from 3 agents), and “What forms do I use for a major

capital equipment procurement?” (23 rules from 2 agents). In these cases, the parsed outputs

are, “‘acquisition’, ‘plan’, ‘sole’, ‘source’, ‘justification’, ‘procurement’”, and “‘forms’, ‘major’,

 29

EARP Report for 3/31/2002

‘capital’, ‘equipment’, ‘procurement’”, respectively. For both queries, the term “procurement”

is problematic. Although “procurement” is a ubiquitous term in the rule base, it has enough

semantic content that it cannot be considered as a stop word. The term “major” also is another

ubiquitous one, particularly in the Forms rule base. So, not only is the search technique and its

effect on discriminating among agents an important feature, the semantic weight and frequency

of occurrence of the actual search terms in the rule base, equally are critical features that affect

MACS performance.

4 REMAINING WORK

None

5 CONCLUSIONS

 The features of the MACS system presented in this report suggest ways in which

multiagent systems can become increasingly useful for human users. This is particularly

promising for acquisition research because of its current heavy reliance on people, which are an

expensive and valuable resource. In previous EARP research, learning was built into MACS as a

“proof of concept”, but now significant degrees of learning, along with a natural language

interface, have been designed into the system so that MACS can be a truly useful tool for human

users. Despite the advances of the MACS system illustrated in this report, field testing and

revision of the system is necessary before it can be used by contracting officers. Details of future

work are outlined below.

 30

EARP Report for 3/31/2002

5.1 Future Work

There are three primary areas for future work. The first two areas involve automatic

updating of vocabulary/synonyms in the MACS system, and the last involves making the system

useful in practice.

1. No rule is fired or no specialty agent is identified
This can be handled in one of two ways. (A) The User agent will parse the sentence and ask the
user for synonyms for key words in the sentence. Synonyms will then be added to the grammar
automatically. (B) The User agent will ask the user to rephrase their question.

2. Words are input to the NL interface that MACS has not seen previously
The User agent will parse the sentence and ask the user for synonyms for key words in the
sentence. Synonyms will then be added to the grammar automatically.

3. A group of potential system users must be identified to use the system and provide
feedback about problems and necessary changes.

 31

EARP Report for 3/31/2002

REFERENCES

1. Ayala, G., and Yano, Y. (1998) A collaborative learning environment based on intelligent

agents. Expert Systems with Applications 14.
2. Goldman, C.V, and Rosenschein, J.S. (1996) Mutually supervised learning in multiagent

systems. In: G. Weiss and S. Sen (eds.), Adaptation and Learning in Multiagent Systems,
Springer-Verlag, New York, 85-96.

3. Goldman, C.V., and Rosenschein, J.S. (1997) Multiagent learning systems and expert agents,
In: Socially Intelligent Agents, Papers from the 1997 AAAI Fall Symposium (November),
58-60.

4. Huang, M.-J. (1999) Intelligent diagnosing and learning agents for intelligent tutoring
systems. Journal of Computer Information Systems (Fall), 45-50.

5. Jerbic, B., Grolinger, K., and Vranjes, B. (1999) Autonomous agent based on reinforcement
learning and adaptive shadowed network, Artificial Intelligence in Engineering 13(2).

6. Jouffe, L. (1998) Fuzzy Inference System Learning by Reinforcement Methods, IEEE
Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews 28 (3).

7. Kokar, M.M, and Reveliotis, S.A. (1993) Reinforcement learning: architectures and
algorithms, International Journal of Intelligent Systems 8(8).

8. Liebowitz, J., Adya, M., Rubenstein-Montano, B., Yoon, Y., Buchwalter, J., Imhoff, M.,
Baek, S., and Suen, C. (2000). MACS : Multi-Agent COTR System for Defense Contracting,
Knowledge-Based Systems Journal 13(3), 241-250.

9. Maclin, R., and Shavlik, J.W. (1996) Creating advice-taking reinforcement learners, Machine
Learning 22(1-3).

10. Maulsby, D., and Witten, I. H. (1997) Teaching agents to learn: From user study to
implementation. IEEE Computer 30(11), 36-44.

11. Mitchell, T. (1997) Machine Learning, McGraw-Hill: New York.
12. Norrie, D.H., and Gaines, B.R. (1995) The learning Web: A system view and agent-oriented

model. International Journal of Educational Telecommunications 1(1), 23-41.
13. Prasad, M.V.N., and Lesser, V.R. (1999) Learning situation-specific coordination in

cooperative multi-agent systems. Autonomous Agents and Multi-Agent Systems 2, 173-207.
14. Rubenstein-Montano, B., Lowry, S., Cantu, F., Drummey, K., Yoon, V., Wilson, T., and

Liebowitz, J. (2001) Agent Learning in the Multi-Agent Contracting officer's technical
representative System (MACS). Submitted to Autonomous Agents and Multi-agent Systems.

15. Sen, S., and Sekaran, M. (1996) Multiagent coordination with learning classifier systems. In:
Adaption and Learning in Multi-Agent Systems, IJCAI 95 Workshop, Springer-Verlag,
Berlin, Germany, 218-233.

16. Shen, W. (1994) Autonomous Learning from the Environment, Computer Science Press,
New York.

17. The Open Agent Architecture ™ , (2000), www.ai.sri.com/~oaa.
18. Vaario, J., and Ueda, K. (1996) Modular learning in a multiagent environment. In: C. H.

Dagli, M. Akay, C. L. P. Chen, B. R. Fernandez and J. Gosh (eds.) Intelligent Engineering
Systems Through Artificial Neural Networks, ANNIE 96 Proc., ASME Press, New York.

19. Yoon, V., Wilson, T., Lowry, S., Rubenstein-Montano, B., and Liebowitz, J. (2001) Natural
Language Interface for the Multi-Agent COTR System (MACS). Submitted to Applied AI.

20. Zeng, D., and Sycara, K. (1998) Bayesian learning in negotiation. International Journal of
Human Computer Studies 48(1), 125-141.

 32

	Screen 1: User “StuartLowry” arrives at the NLP S

